

Technical Brief

NVIDIA Unified Compiler
Technology
Unleashing Innovations

Getting the Most
Out of the Hardware

NVIDIA graphics architectures have come a long way since the company’s first
graphics processing units (GPUs). Today, the NVIDIA® GeForce™ FX family of
Microsoft® DirectX® 9.0 GPUs offers developers the ability to create sophisticated
visual effects in real time. And with a level of image quality that is rapidly closing the
gap between real-time computer-generated (CG) graphics and offline rendering of
the film world. Developers are able to develop long shaders with minimal
restrictions using DirectX 9 pixel shader version 2.0+ and OpenGL fragment
programs. This enables complex effects to be implemented in pixel shaders and
allows developers to generate photorealistic effects in real time.

Delivering industry-leading graphics solutions entails a broad set of challenges and
even some fortune telling. Hardware designers not only must continually push the
performance and functionality forward, but also anticipate the future direction for
the major software application programming interfaces (APIs). Even with attention
to every detail, coupling a new architecture with the long list of emerging application
requirements from the various APIs can be daunting. When a new GPU is released,
its new architecture may not suit the latest software programming techniques for
one API, yet it may be ideally suited for the programming techniques of another.

The new NVIDIA unified compiler technology overcomes these challenges and
provides a new level of freedom for hardware innovations. Just as computer system
programming language compilers provide software developers with optimized
application performance regardless of the latest API requirements, the NVIDIA
unified compiler technology maximizes performance for the combination of the
latest APIs and NVIDIA hardware. Instead of time-consuming and sometimes
disappointing hand-tuning efforts, the NVIDIA unified compiler technology
ensures that each software instruction is automatically executed in a manner that
streamlines the execution of graphics applications.

This paper provides an overview of the basic concepts behind the NVIDIA unified
compiler technology.

TB-01051-001_v01 2
10/21/03

 NVIDIA Unified Compiler Technology

The NVIDIA GeForce
FX Architecture

Instruction Translation
The NVIDIA unified compiler technology introduces an additional level of
intelligence into NVIDIA drivers. The built-in intelligence fills the role of a
compiler by translating higher-level instructions—programming instructions written
to an API such as OpenGL or DirectX 9—into lower-level instructions understood
by the GPU (Figure 1).

Figure 1. Built into the NVIDIA® ForceWare™ graphics driver, the NVIDIA unified
compiler technology translates program instructions into hardware-ready
instructions tailored to optimally use NVIDIA hardware

TB-01051-001_v01
10/21/03 3

 NVIDIA Unified Compiler Technology

Automatic Tuning
Besides performing this translation process, the NVIDIA unified compiler
technology includes numerous cutting-edge matching and rescheduling algorithms.
This optimization step ensures that each application program instruction is
translated into the least number of GPU instructions possible, and that each GPU
instruction takes optimal advantage of the NVIDIA GeForce FX architectures
advanced capabilities.

This step is particularly important in a feature-rich, fully programmable architecture
such as the GeForce FX family architecture. This architecture has evolved to
include many features that go beyond Microsoft DirectX 9 functionality. For
example, the GeForce FX GPUs include multiple parallel adders. Written to an API
such as DirectX 9, programs that call out multiple addition operations would result
in multiple GPU instructions to perform the addition operations. The NVIDIA
unified compiler technology, designed to identify operations involving multiple
addition steps, can streamline multiple adds into a single instruction and significantly
improve application performance.

This step also allows each API to be supported on GeForce FX GPUs with the best
possible performance. For example, the latest Microsoft DirectX 9 API uses a
programming convention that, without compilation, would slow operation on
NVIDIA GPUs. Operands may be passed to the GPU in a specific order—texture,
math, texture, math—which is different than what would work best with the
GeForce FX hardware design. The NVIDIA unified compiler technology efficiently
translates these operands into the order that maximizes execution on NVIDIA
GPUs—texture, texture, math, math. This one compiler feature can deliver a 60
percent performance improvement for DirectX 9 applications, and points out how a
minor programming difference can result in significant performance impact on
programmable GPUs.

Compiler technology tunes DirectX 9 execution on GeForce FX GPUs, and can be
used to correct any similar conflict that arises with future APIs. Following are other
examples of the automatic tuning performed by the NVIDIA unified compiler.

Example 1
The following input shader takes 11.55 effective cycles due to a 7-pass shader that
uses 5 registers:

ps_2_0

texld r4, t0, s0 // 0
texld r1, t1, s1 // 0
texld r2, t2, s2 // 1
texld r3, t3, s3 // 1
add r0, v0, r3 // 2
mul r0, r4, r0 // 4

When optimized through the compiler, it takes 5.38 effective cycles due to a 4-pass
shader that uses 3 registers. Hence, the output shader runs twice as fast as the input
shader. This illustrates how the compiler chooses tex-tex-blend-blend patterns to
utilize different units in the GeForce FX shader pipeline.

mad oC0, r1, r2, r0 // 6

TB-01051-001_v01
10/21/03 4

 NVIDIA Unified Compiler Technology

ps_2_0

texld r1, t1, s1 // 0
texld r0, t2, s2 // 0
mulr r0, r1, r0 // 0
texld r1, t3, s3 // 1
texld r2, t0, s0 // 1
addr r1, v1, r1 // 2
mulr r1, r2, r1 // 2
addr r0, r1, r0 // 3

Example 2

Here is another example that illustrates different optimizations the compiler does
and how it picks instructions based on different criteria. The input shader takes
25.53 effective passes because it is an 11-pass shader that uses 7 registers:

ps_2_a

texld r0, t0.xyzz, s2 // 0
texld r1, t4.xyzz, s0 // 1
texld r2, t1.xyzz, s1 // 2
texld r3, t2.xyzz, s3 // 3
mul r3.xyz, r0.w, r0 // 3
mul r3.xyz, r1, r3 // 5
mul r3.xyz, r3, c0 // 6
mad r4.xyz, r2.w, r2, -r3 // 7
mad r5.xyz, r3.w, r4, r3 // 8
mul r6.xyz, r5, c1.x // 8
mov r6.w, c1.w // 9
mov oC0, r6 // 10

The NVIDIA unified compiler can automatically optimize this program to take 7.06
effective cycles with a 5-pass and 4-register shader. This example also shows how
the compiler automatically schedules instructions considering several criteria. It pairs
textures only in one case because it has to choose between saving cycles by reducing
bank conflicts versus pairing textures.

ps_2_a

texld r1, t0, s2 // 0
texld r0, t2, s3 // 0
mul r0.xyz, r1.w, r1 // 0
texld r3, t4, s0 // 1
mul r0.xyz, r3, r0 // 1
texld r1, t1, s1 // 2
mul r1.xyz, r1.w, r1 // 2
mul r0.xyz, r0, c0 // 3
add r1.xyz, -r0, r1 // 3
mul r1.xyz, r0.w, r1 // 3
add r0.xyz, r0, r1 // 4
mul r0.xyz, r0, c1.x // 4
mov r0.w, c1.w // 4

TB-01051-001_v01
10/21/03 5

 NVIDIA Unified Compiler Technology

Example 3
Here is another example where the compiler minimizes the number of registers to
achieve good performance. The input shader program runs in 9.38 effective cycles:

ps_2_0

texld r2, t0, s0 // 0
texld r3, t1, s1 // 0
mad r1, v1, c1.x, c1.y // 1
dp3 r1, r2, r1 // 1
add r0, r1, c0 // 2
mul r1, v0, r0 // 3
mul r0.xyz, r1, r3 // 5
mov r0.w, r3 // 6
mov oC0 r0 // 7

The optimal output program generated by the compiler runs in 5 effective cycles:
ps_2_0

texld r0, t0, s0 // 0
mul r1.xyz, v1, c1.x // 1
add r1.xyz, c1.y, r1 // 1
dp3 r0.x, r0, r1 // 1
add r0.xyz, r0.x, c0 // 2
mul r0.xyz, v0, r0 // 3
texld r1, t1, s1 // 4
mul r0.xyz, r0, r1 // 4
mov r0.w, r1 // 4

The Benefits of a
Graphics Compiler

For Programmers
Programmers can benefit from these features:

Fast access to the latest hardware advances. Compilers automatically
leverage the feature-rich GeForce FX platform without requiring developers to
know about the latest implementation details. The NVIDIA unified compiler
automates the tuning of an application to the hardware.

 Shortened development cycles and optimized runtime performance.
Because the technology carries out the tuning at runtime, programmers gain the
time savings of writing a single version of each application. As long as
application developers write to an industry-standard API, their applications will
run with maximized efficiency on the GeForce FX GPUs.

TB-01051-001_v01
10/21/03 6

 NVIDIA Unified Compiler Technology

Transparent benefit from NVIDIA enhancements and special features.
Even if the application is written to an API in a manner to maximize portability
among platforms, the NVIDIA compiler will take advantage of NVIDIA
hardware that goes beyond the API. The three previous examples illustrate this.
Forward and backward compatibility. Today’s applications ensure that
tomorrows drivers will optimize the same code to best fit tomorrow’s GPUs.

For Users
The NVIDIA unified compiler technology does not compromise image quality in
any way. The matching and rescheduling algorithms make no compromises to image
quality in order to achieve the accelerated execution results.

Unlike other tuning approaches that sometimes require tradeoffs, compiler
technology introduces a way to inject intelligent tuning and gain performance
benefits without reducing anisotropic filtering, trilinear filtering, antialiasing, or
other parameters that affect the overall visual experience of the users. Users will see
performance gains in increased interactivity for games and other real-time
applications.

For the Industry
Compiler technology will serve as a positive force for graphics applications. The key
benefits for the entire industry include

Innovations. Hardware designers are not forced to evolve hardware
architectures in step with APIs. This freedom fosters innovation while ensuring
compatibility with APIs and smooth migration paths for developers and users.
Users that demand the best graphics capabilities and performance will not be
held back by hardware designers who divert resources to tune to a particular
API.
Performance. The compiler component of the overall graphics architecture
opens many opportunities for higher-level tuning efforts. Just as they do for
computer systems, compilers can account for more performance advances than
either software-only or hardware-only efforts. As the unique link between
software and hardware, compilers can implement the latest optimizing
algorithms and techniques. This frees developers from having to optimize for a
single platform, allowing them to remain focused on their core competencies.
Investment protection. Risks are minimized because hardware architects do
not have to accurately predict where APIs will be years down the road.
Hardware evolution takes place over years, whereas software can change rapidly
and leave hardware designers with difficult issues to overcome if they have not
anticipated the change. The result will be graphics solutions that maximize
performance for all APIs.

TB-01051-001_v01
10/21/03 7

 NVIDIA Unified Compiler Technology

Historical Perspective
Compilers are not new. Computer systems have relied on compiler technology for
decades. As machine architectures became more and more complex, the low-level
machine languages became too cumbersome to use, and tuning applications became
an intensive exercise that required in-depth expertise. Today, application
programmers have a host of higher-level programming languages to choose from,
and generations of compiler technologies have automated many previously tedious
tuning steps.

The same evolutionary forces are at work in the graphics industry. GPUs are
significantly more complex today, with many more functions built into the
hardware.

With these technologies, NVIDIA has made numerous steps to simplifying
programming:

The NVIDIA Unified Driver Architecture (UDA). A single driver supports
all NVIDIA GPUs, shielding the programmer and users from the various
differences in the graphics solutions, while taking advantage of whatever
hardware features are available.

 The NVIDIA unified compiler technology. The NVIDIA unified compiler
technology automates the optimization of graphics applications written for
various APIs. It accomplishes this by matching and rescheduling instructions to
execute in the shortest possible number of instructions on NVIDIA GPUs.

Summary
With the NVIDIA unified compiler technology, NVIDIA continues a tradition of
driving architectural enhancements that foster innovation and high performance. By
designing graphics solutions that solve the most challenging problems and deliver
the highest levels of programmability, NVIDIA offers uncompromised graphics
power and unmatched visual experiences to numerous applications. The NVIDIA
unified compiler gives NVIDIA engineers the freedom that they need, and avoids
having to customize an architecture to any one version of an API—an architecture
that would be hard to evolve for other APIs and future changes of direction.

In the long term, striving for the most feature-rich architecture will push the
industry forward much more aggressively. NVIDIA remains committed to this
approach, and will continue to aim for far-reaching milestones marking both
hardware and software advancements.

TB-01051-001_v01
10/21/03 8

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication
supersedes and replaces all information previously supplied. NVIDIA Corporation products are not
authorized for use as critical components in life support devices or systems without express
written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, ForceWare, and GeForce are trademarks or registered trademarks of
NVIDIA Corporation. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2003 by NVIDIA Corporation. All rights reserved.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	Getting the Most �Out of the Hardware
	The NVIDIA GeForce FX Architecture
	Instruction Translation
	Automatic Tuning
	Example 1
	Example 2
	Example 3

	The Benefits of a Graphics Compiler
	For Programmers
	For Users
	For the Industry

	Historical Perspective
	Summary

